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We have developed a novel method for the synthesis of 3,4-diarylpyrrole-2,5-dicarboxylates via a-diazo
esters, which are easily obtained from phenylalanine derivatives. Utilizing this method, intermediates of
bioactive compounds having the structure of 3,4-diarylpyrrole-2,5-dicarboxylates were synthesized.

� 2009 Elsevier Ltd. All rights reserved.
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Figure 1.
In our series of investigations on the reactivity and the utility of
a-diazo esters 1, which are easily available from corresponding a-
amino acid esters1,2, we found that the terminal nitrogen of 1 was
readily attacked by nucleophiles, such as aryllithiums, hydride re-
agents, and phosphines. The addition of aryllithiums to 1 gave aryl
hydrazones 2, the precursor for the Fisher indole synthesis.2 Aryl
hydrazones 2 were converted into indoles 3 under acidic condi-
tions in good yields. Hydride reagents also reacted with 1 to yield
hydrazones 4.3 Hydrazones 4 in turn could yield 1,3,4-oxadiazin-6-
ones 5, the substrate for the Diels–Alder reaction. The terminal
nitrogen of 1 also reacted with phosphines to give aza-ylides 6 that
were easily hydrolyzed to furnish 4 (Fig. 1). In this Letter, we report
a novel method for the synthesis of 3,4-diarylpyrrole-2,5-dicarbox-
ylates 7 via 4 that were easily obtained from phenylalanine
derivatives.

Several 3,4-diarylpyrrole-2,5-dicarboxylates are known for
their unique biological activities. For example, polycitone A (8) is
a natural product that inhibits the activity of retroviral reverse
transcriptases and cellular DNA polymerases.4 Storniamide A (10)
and permethyl storniamide A (11) have multidrug resistance
(MDR) reversal activity5 (Fig. 2). The synthesis of these compounds
has been performed by some groups.6–10 The Piloty–Robinson pyr-
ll rights reserved.

kamura).
role synthesis is a conventional method for the synthesis of pyr-
roles under vigorous reaction conditions.11 The condensation of
two carbonyl compounds and hydrazine gives azine 12. It is con-
sidered that the isomerization of 12 and its subsequent cyclization
furnish pyrrole 7 (Fig. 3). We speculated that hydrazones 4 ob-
tained by our methodology from a-diazo esters 1 could be precur-
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sors for the synthesis of azine 12. Thus, first, we exposed (E)-hydra-
zone 4a prepared from a-diazo ester 1a derived from ethyl phe-
nylalaninate to acidic conditions (heating in a sealed tube with
10 mol equiv of thionyl chloride in ethanol at 90 �C for 45 min)
to give azine 12a. However, the reaction proceeded quickly and
pyrrole 7a was obtained in 94% yield instead of azine 12a (Scheme
1).12 (Z)-Hydrazone 4a0 or a mixture of both stereoisomers also
gave pyrrole 7a in good yield under the same reaction conditions.

As pyrrole 7a was obtained in good yield, we examined other
substrates (Table 1). Hydrazones 4b–e derived from tyrosine deriv-
atives gave pyrroles 7b–e (entries 2–5). Protection of the hydroxyl
group was not necessary for a series of reactions (diazotization,
reduction, and cyclization). Although hydrazone 4f derived from
4-chloro phenylalanine gave pyrrole 7f in good yield, 4g derived
from 4-nitro phenylalanine failed to produce a pyrrole. Hydrazones
containing 5-membered heteroaromatic compounds 4h and 4i
were prepared from corresponding amino acid esters13 and sub-
jected to cyclization. Unfortunately, no pyrroles could be obtained
from these compounds.

Then, we examined the synthesis of intermediates that can
lead to bioactive compounds 8, 9, and 11 (Scheme 2). 4-Methoxy
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Scheme 1. Reagents and conditions: (i) P(n-Bu)3, IPE, 93%; and (ii) SOCl2, EtOH, 90 �C (in a sealed tube).
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selectride�, THF.
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conditions

Entry Conditions Yield (%)

1 SOCl2 (�10), EtOH 94
2 SOCl2 (�5), EtOH 91
3 SOCl2 (�2.5), EtOH 63
4 SOCl2, THF 0
5 AcCl, EtOH 84
6 AcOH 0a

7 0.5 M aq HCl, EtOH 3
8 36% aq HCl, EtOH 8
9 98% H2SO4, EtOH 12

10 85% H3PO4, EtOH 0b

11 46% HBr, EtOH 8c

12 TFA, CH2Cl2 26

a (Z)-Hydrazone was isolated in 19% yield. Starting material was recovered in 67%
yield.

b Starting material was recovered in 31% yield.
c Starting material was recovered in 5% yield.
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tyrosine was esterified with methanol and subjected to diazotiza-
tion. The resulting diazo ester was reduced to hydrazone 4c, and
4c was heated in a sealed tube under acidic conditions to give pyr-
role 7c in good yield. Hydrolysis of 7c gave corresponding carbox-
ylic acid 13c,14 the synthetic intermediate of 8 and 9.7c The same
conversions were applied to 3,4,5-trimethoxy tyrosine obtained
by known procedures15 to yield pyrrole 7d,16 the intermediate of
11.6
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Figure
To clarify the mechanism of this reaction, several acidic con-
ditions were next examined using hydrazone 4a (Table 2). We
conjectured that anhydrous hydrogen chloride generated from
thionyl chloride and alcohol would work as a proton source to
promote the reaction. At this stage, the reaction mechanism
can be represented as depicted in Figure 4. Two molecules of
hydrazone 4a were condensed with the loss of hydrazine salt
to yield symmetric azine 12a. Azine 12a was isomerized with
the aid of acid, and 3,3-sigmatropic rearrangement led to cycli-
zation immediately under heating with the loss of ammonium
salt. When the cyclization was accomplished in THF with thionyl
chloride, no pyrrole was obtained at all because no hydrogen
chloride was produced. Furthermore, the combination of
acetyl chloride and ethanol also gave pyrrole 7a in good yield.
Although hydrogen chloride seemed to be an essential factor,
aqueous hydrochloric acid hardly promoted the reaction (entries
7 and 8). Also, sulfuric acid and phosphoric acid were not suit-
able (entries 9 and 10). Acetic acid promoted only the isomeriza-
tion of the hydrazone 4a to give 4a0 in 19% yield, and 67% of the
starting material was recovered. Hydrobromide in acetic acid
produced a small amount of pyrrole 7a. Thus, the combination
of thionyl chloride and alcohol is the best condition. Although
the yield scarcely decreased when the amount of thionyl chlo-
ride was reduced to 5 mol equiv (91%), use of 2.5 mol equiv of
thionyl chloride severely lowered the yield (63%). Further studies
aimed at developing a novel method for the synthesis of pyrroles
from other a-diazo esters derived from a variety of a-amino acid
esters are in progress.

In conclusion, we have developed a novel method for the syn-
thesis of 3,4-diarylpyrrole-2,5-dicarboxylates via a-diazo esters
that are easily obtained from phenylalanine derivatives. Our meth-
od is milder than the Piloty–Robinson pyrrole synthesis, and pyr-
roles are obtained in good yields.
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